题目内容

7.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC中点.若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为2秒或3.5秒或4.5秒.

分析 先求出AB的长,再分①∠BDE=90°时,DE是△ABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠B的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.

解答 解:∵∠ACB=90°,∠ABC=60°,BC=2cm,
∴AB=BC÷cos60°=2÷$\frac{1}{2}$=4(cm),
①∠BDE=90°时,
∵D为BC的中点,
∴DE是△ABC的中位线,
∴AE=$\frac{1}{2}$AB=$\frac{1}{2}$×4=2(cm),
点E在AB上时,t=2÷1=2(秒),
点E在BA上时,点E运动的路程为4×2-2=6(cm),
∴t=6÷1=6(秒)(舍去);
②∠BED=90°时,BE=BD•cos60°=$\frac{1}{2}$×2×$\frac{1}{2}$=0.5(cm),
点E在AB上时,t=(4-0.5)÷1=3.5(秒),
点E在BA上时,点E运动的路程为4+0.5=4.5(cm),
t=4.5÷1=4.5(秒),
综上所述,t的值为2秒或3.5秒或4.5秒,
故答案为:2秒或3.5秒或4.5秒.

点评 本题考查了三角形的中位线定理,解直角三角形的相关知识,难点在于分情况讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网