题目内容
16.化简:①($\frac{2x}{x-3}$$-\frac{x}{x+3}$)•$\frac{{x}^{2}-9}{x}$
②$\frac{x-2}{{x}^{2}-2x+1}$÷($\frac{2x-1}{x-1}$-x-1)-$\frac{1}{x}$
③先化简,再求代数式$\frac{{x}^{2}}{{x}^{2}+4x+4}$÷$\frac{x}{x+2}$$-\frac{x-1}{x+2}$的值,其中x=$\sqrt{2}$-2.
分析 ①根据分式的减法和乘法可以解答本题;
②根据分式的除法和减法可以解答本题;
③先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
解答 解:①($\frac{2x}{x-3}$$-\frac{x}{x+3}$)•$\frac{{x}^{2}-9}{x}$
=$\frac{2x(x+3)-x(x-3)}{(x+3)(x-3)}•\frac{(x+3)(x-3)}{x}$
=2(x+3)-(x-3)
=2x+6-x+3
=x+9;
②$\frac{x-2}{{x}^{2}-2x+1}$÷($\frac{2x-1}{x-1}$-x-1)-$\frac{1}{x}$
=$\frac{x-2}{(x-1)^{2}}÷\frac{(2x-1)-(x+1)(x-1)}{x-1}-\frac{1}{x}$
=$\frac{x-2}{(x-1)^{2}}•\frac{x-1}{-x(x-2)}-\frac{1}{x}$
=$\frac{1}{x(1-x)}-\frac{1}{x}$
=$\frac{1-(1-x)}{x(1-x)}$
=$\frac{1}{1-x}$;
③$\frac{{x}^{2}}{{x}^{2}+4x+4}$÷$\frac{x}{x+2}$$-\frac{x-1}{x+2}$
=$\frac{{x}^{2}}{(x+2)^{2}}•\frac{x+2}{x}-\frac{x-1}{x+2}$
=$\frac{x}{x+2}-\frac{x-1}{x+2}$
=$\frac{1}{x+2}$,
当x=$\sqrt{2}$-2时,原式=$\frac{1}{\sqrt{2}-2+2}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
| A. | △BCE≌△DCF | B. | OG∥AD | C. | BH=GH | D. | OG=$\frac{1}{2}$BD |