题目内容
1.分析 由矩形的性质和已知条件得出△AOB是等边三角形,得出OA=AB=3,AC=2OA=6,进而得出BC的长.
解答 解:∵四边形ABCD是矩形,
∴∠ABC=90°,OA=OC=$\frac{1}{2}$AC,OB=OD=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB=3,
∴AC=2OA=6,
BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
则矩形的长边长为3$\sqrt{3}$;
故答案为:3$\sqrt{3}$.
点评 本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
练习册系列答案
相关题目