题目内容

19.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.
(1)若点D在线段BC上,如图1.
①依题意补全图1;
②判断BC与CG的数量关系与位置关系,并加以证明;
(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=$\sqrt{2}$,则GE的长为$\sqrt{10}$,并简述求GE长的思路.

分析 (1)①依题意补全图形,如图1所示,②判断出△BAD≌△CAF即可;
(2)先判断出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理计算即可.

解答 (1)证明:①依题意补全图形,如图1所示,

②BC⊥CG,BC=CG;
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∠DAF=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,
∴∠ACF+∠ACB=90°,
∴BC⊥CG;
∵点G是BA延长线上的点,
BC=CG
(2)如图2,

∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD-∠DAC=90°,
∠DAF=∠CAF-∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAF}\\{AD=AF}\end{array}\right.$
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,BD=CF,
∴∠ACF+∠ACB=90°,
∴BC⊥CF;
∵AB=$\sqrt{2}$,BC=CD=CG=GF=2,
∴在Rt△AGH中,根据勾股定理得,AG=$\sqrt{2}$,
∴在Rt△AGH中,根据勾股定理的,DG=2$\sqrt{2}$,
∵AD=$\sqrt{10}$,
∴AH=$\frac{\sqrt{10}}{5}$,HG=$\frac{2\sqrt{10}}{5}$,
∴GI=AD-HG=$\frac{3\sqrt{10}}{5}$,
∴GE=$\sqrt{G{I}^{2}+I{E}^{2}}$=$\sqrt{10}$
故答案为$\sqrt{10}$.

点评 此题是四边形综合题,主要考查了全等三角形的性质和判定,垂直的判断方法,解本题的关键是判断出角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网