题目内容

16.如图,直线AB∥CD,EG平分∠AEF,HE⊥GE于E,且平移EH恰好到GF,则下列结论:①EH平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°,其中一定正确的结论有4个.

分析 根据角平分线的定义得到∠AEG=∠GEF=$\frac{1}{2}$∠AEF,根据余角的性质得到∠BEH=∠FEH,于是得到EH平分∠BEF;故①正确,根据平移的性质得到四边形EGFH是平行四边形,根据平行四边形的性质得到EG∥FH,EG=HF;故②正确;根据平行线的性质得到∠AEF=∠DFE,于是得到FH平分∠EFD;故③正确;根据矩形的性质得到∠GFH=90°,故④正确.

解答 解:∵EG平分∠AEF,
∴∠AEG=∠GEF=$\frac{1}{2}$∠AEF,
∵HE⊥GE于E,
∴∠GEH=90°,
∴∠GEF+∠HEF=90°,
∴∠AEG+∠BEH=90°,
∴∠BEH=∠FEH,
∴EH平分∠BEF;故①正确,
∵平移EH恰好到GF,
∴四边形EGFH是平行四边形,
∴EG∥FH,EG=HF;故②正确;
∴∠GEF=∠EFH,
∵AB∥CD,
∴∠AEF=∠DFE,
∵∠GEF=$\frac{1}{2}∠$AEF,
∴∠EFH=$\frac{1}{2}∠$EFD,
∴FH平分∠EFD;故③正确;
∵四边形EGFH是平行四边形,∠GEH=90°,
∴四边形EGFH是矩形,
∴∠GFH=90°,故④正确,
∴正确的结论有4个,
故答案为:4.

点评 本题考查了平移的性质,平行线的性质,角平分线的定义,平行四边形的判定和性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网