题目内容

13.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列三个条件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三个条件中,满足哪两个条件可判定△OBC是等腰三角形(请用条件前的序号写出所有情形);
(2)请选择(1)中的一种情形说明理由.

分析 (1)可以利用三角形全等的判定方法解决问题.
(2)有两种情形,只要证明△BEO≌△CDO即可解决.

解答 解:(1)①③或②③
(2)满足①③时,
在△BEO和△CDO中,
$\left\{\begin{array}{l}{∠EBO=∠DCO}\\{∠EOB=∠DOC}\\{BE=CD}\end{array}\right.$,
∴△BEO≌△CDO,
∴OB=OC,
∴△OBC是等腰三角形.
满足②③时,
在△BEO和△CDO中,
$\left\{\begin{array}{l}{∠BEO=∠CDO}\\{∠EOB=∠DOC}\\{BE=CD}\end{array}\right.$,
∴△BEO≌△CDO,
∴OB=OC,
∴△OBC是等腰三角形.

点评 本题考查全等三角形的判定和性质,解题的关键是首先理解题意,其次是正确寻找哪两个三角形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网