题目内容
7.(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.
分析 (1)首先根据角平分线性质与平行线性质证明∠ABD=∠CDB,再根据平行四边形性质证出CD=AB,∠A=∠C,可利用ASA定理判定△ABE≌△CDF;
(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.
解答 证明:(1)∵∠ABD的平分线BE交AD于点E,
∴∠ABE=$\frac{1}{2}$∠ABD,
∵∠CDB的平分线DF交BC于点F,
∴∠CDF=$\frac{1}{2}$∠CDB,
∵在平行四边形ABCD中,
∴AB∥CD,
∴∠ABD=∠CDB,
∴∠CDF=∠ABE,
∵四边形ABCD是平行四边形,
∴CD=AB,∠A=∠C,
即$\left\{\begin{array}{l}{∠A=∠C}\\{AB=DC}\\{∠ABE=∠CDF}\end{array}\right.$,
∴△ABE≌△CDF(ASA);
(2)∵△ABE≌△CDF,
∴AE=CF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴DE∥BF,DE=BF,
∴四边形DFBE是平行四边形,
∵AB=DB,BE平分∠ABD,
∴BE⊥AD,即∠DEB=90°.
∴平行四边形DFBE是矩形.
点评 本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关题目