题目内容


如图2 - 113所示,在ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,延长FE与DC的延长线交于点G,设BE=x,△DEF的面积为S.

    (1)求证△BEF∽△CEG;

    (2)用x表示S的函数关系式,并写出x的取值范围

(3)当E运动到何处时,S有最大值,最大值为多少?


(1)证明:∵AB∥CD,∴∠B=∠ECG.又∠BEF=∠CEG,∴△BEF∽△CEG. 

(2)解:由(1)得,∠G=∠BFE=90°,∴DG为△DEF中EF边上的高.在Rt△BFE中,∠B=60°,EF=BEsin B=x.在Rt△CGE中,CE=3-x,CG=(3-x)cos 60°=,∴DG=DC+CG=,∴S=EF·DG=-x2x,其中0<x≤3. 

(3)解:∵a=-<0,对称轴x=,∴当0<x≤3时,S随x的增大而增大,∴当x=3,即E与C重合时,S有最大值,S最大值=3


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网