题目内容
如图2-109所示的抛物线的解析式是 ( )
A.y=x2-x+2 B.y=-x2-x+2
C.y=x2+x+2 D.y=-x2+x+2
D[提示:应用待定系数法.]
抛物线y=x2﹣2x+3的顶点坐标是 .
二次函数y=ax2+bx+c,b2=ac,且x=0时y=-4则( )
A.y最大=-4 B.y最小=-4 C.y最大=-3 D.y最小=3
已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A.BCD.
某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只熊猫的成本为R元,售价为每只P元,且R,P与x之间的函数关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少只时,每日获得的利润为1750元?
(2)当日产量为多少只时,每日可获得最大利润?最大利润是多少元?
如图2-110所示的是二次函数y=ax2-x+a2-1的图象,则a的值是 .
如图2 - 113所示,在ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,延长FE与DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证△BEF∽△CEG;
(2)用x表示S的函数关系式,并写出x的取值范围;
(3)当E运动到何处时,S有最大值,最大值为多少?
如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0) , 且x1+x2=4, .(1)求抛物线的代数表达式;
(2)设抛物线与y轴交于C点,求直线BC的表达式;
(3)求△ABC的面积.
如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )
A.40° B.45°
C.50° D.60°