题目内容

20.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是(  )
A.a:b:c=3:5:6B.a2-c2=b2C.∠A-∠B=∠CD.a=$\sqrt{7}$,b=3,c=4

分析 利用直角三角形的定义和勾股定理的逆定理逐项判断即可.

解答 解:A、不妨设a=3,b=5,c=6,此时a2+b2=34,而c2=36,即a2+b2≠c2,故△ABC不是直角三角形;
B、由条件可得到a2=c2+b2,满足勾股定理的逆定理,故△ABC是直角三角形;
C、由条件可得∠A=∠B+∠C,且∠A+∠B+∠C=180°,可求得∠A=90°,故△ABC为直角三角形;
D、由条件有a2+b2=($\sqrt{7}$)2+32=16=42=c2,满足勾股定理的逆定理,故△ABC是直角三角形.
故选A.

点评 本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关键,可以利用定义也可以利用勾股定理的逆定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网