题目内容
13.若方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$,求方程组$\left\{\begin{array}{l}{2{a}_{1}x-{b}_{1}y={a}_{1}-2{b}_{1}+{c}_{1}}\\{2{a}_{2}x-{b}_{2}y={a}_{2}-2{b}_{2}+{c}_{2}}\end{array}\right.$的解.分析 所求方程组变形后,仿照已知方程组求出解即可.
解答 解:所求方程组整理得:$\left\{\begin{array}{l}{{a}_{1}(2x-1)+{b}_{1}(2-y)={c}_{1}}\\{{a}_{2}(2x-1)+{b}_{2}(2-y)={c}_{2}}\end{array}\right.$,
由方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$,得到$\left\{\begin{array}{l}{2x-1=-2}\\{2-y=5}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=-3}\end{array}\right.$.
点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
练习册系列答案
相关题目