题目内容
16.| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3 |
分析 作C关于AB的对称点E,过E作EN⊥AC于N,连接AE,则EN=CM+MN的最小值,由对称的性质得到AB垂直平分BC,推出△AEN是等腰直角三角形,解直角三角形即可得到结论.
解答
解:作C关于AB的对称点E,过E作EN⊥AC于N,连接AE,
则EN=CM+MN的最小值,
由对称的性质得:AB垂直平分BC,
∴AE=AC=6,∠EAC=2∠BAC=45°,
∴△AEN是等腰直角三角形,
∴EN=$\frac{\sqrt{2}}{2}$AE=3$\sqrt{2}$,
故选C.
点评 本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过线段平分线性质,垂线段最短,确定线段和的最小值.
练习册系列答案
相关题目