题目内容
4.分析 由平行四边形的性质和角平分线的定义得出∠BAE=∠BEA,得出AB=BE=AE,所以△ABE是等边三角形,由AB的长,可求出△ABE的面积,再根据△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),可得S△FCD=S△ABC,又因为△AEC与△DEC同底等高,所以S△AEC=S△DEC,即S△ABE=S△CEF问题得解.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形,
∵AB=1cm,
∴△ABE的面积=$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$cm2,
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF=$\frac{\sqrt{3}}{4}$cm2.
故答案为:$\frac{\sqrt{3}}{4}$.
点评 此题考查了平行四边形的性质、等边三角形的判定与性质、三角形的面积关系,解题的关键是首先证明△ABE是等边三角形,求△CEF的面积转化为求△ABE的面积.
练习册系列答案
相关题目
16.
如图:△ABC中,AC=6,∠BAC=22.5°,点M、N分别是射线AB和AC上动点,则CM+MN的最小值是( )
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3 |
13.
如图,在?ABCD中,E是AD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是( )
| A. | $\frac{AF}{AB}$=$\frac{AE}{DE}$ | B. | $\frac{AF}{CD}$=$\frac{AE}{BC}$ | C. | $\frac{AF}{AB}=\frac{EF}{CE}$ | D. | $\frac{DE}{AE}=\frac{CE}{EF}$ |