题目内容

10.【问题引入】
(1)如图1,△ABC,点O是∠ABC和∠ACB相邻的外角平分线的交点,若∠A=40°,请求出∠BOC的度数.
【深入探究】
(2)如图2,在四边形ABCD中,点O是∠BAC和∠ACD的角平分线的交点,若∠B+∠D=110°,请求出∠AOC的度数.

【类比猜想】
(3)如图3,在△ABC中,∠CBO=$\frac{1}{3}$∠DBC,∠BCO=$\frac{1}{3}$∠ECB,∠A=α,则∠BOC=120°-$\frac{1}{3}$α(用α的代数式表示,直接写出结果,不需要写出解答过程).
(4)如果BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=$\frac{1}{n}$∠DBC,∠BCO=$\frac{1}{n}$∠ECB则∠BOC=$\frac{(n-1)×180°}{n}$-$\frac{1}{n}$α.(用n、a的代数式表示,直接写出结果,不需要写出解答过程).

分析 (1)由三角形内角和定理可求得∠ABC+∠ACB,再利用邻补角可求得∠DBC+∠ECB,根据角平分线的定义可求得∠OBC+∠OCB,在△BOC中利用三角形内角和定理可求得∠BOC;
(2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC与∠B+∠D之间的关系;
(3)如图3,根据三角形的内角和等于180°列式整理即可得∠BOC=120°-$\frac{1}{3}$α;
(4)根据三角形的内角和等于180°列式整理即可得∠BOC=$\frac{(n-1)×180°}{n}$-$\frac{1}{n}$α.

解答 解:(1)∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=140°,
∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,
∵BO、CO分别平分∠DBC和∠ECB,
∴∠OBC+∠OCB=$\frac{1}{2}$(∠DBC+∠ECB)=$\frac{1}{2}$×220°=110°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-110°=70°;

(2)∵点O是∠BAC和∠ACD的角平分线的交点,
∴∠OAC=$\frac{1}{2}$∠CAB,∠OCA=$\frac{1}{2}$∠ACD,
∴∠AOC=180°-(∠OAC+∠OCA)
=180°-$\frac{1}{2}$(∠CAB+∠ACD)
=180°-$\frac{1}{2}$(360°-∠B-∠D)
=$\frac{1}{2}$(∠B+∠D),
∵∠B+∠D=110°,
∴∠AOC=$\frac{1}{2}$(∠B+∠D)=55°;

(3)如图③,在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-$\frac{1}{3}$(∠DBC+∠ECB)
=180°-$\frac{1}{3}$(∠A+∠ACB+∠A+ABC)
=180°-$\frac{1}{3}$(∠A+180°)
=120°-$\frac{1}{3}$α;
(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-$\frac{1}{n}$(∠DBC+∠ECB)
=180°-$\frac{1}{n}$(∠A+∠ACB+∠A+ABC)
=180°-$\frac{1}{n}$(∠A+180°)
=$\frac{(n-1)×180°}{n}$-$\frac{1}{n}$α.
故答案为:120°-$\frac{1}{3}$α;$\frac{(n-1)×180°}{n}$-$\frac{1}{n}$α.

点评 本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网