题目内容

4.当a>1时,化简$\frac{a+1+\sqrt{{a}^{2}-1}}{a+1-\sqrt{{a}^{2}-1}}$+$\frac{a+1-\sqrt{{a}^{2}-1}}{a+1+\sqrt{{a}^{2}-1}}$.

分析 分子、分母先进行因式分解化简,然后通分利用乘法公式化简.

解答 解:∵a>1
∴原式=$\frac{(\sqrt{a+1})^{2}+\sqrt{(a+1)(a-1)}}{(\sqrt{a+1})^{2}-\sqrt{(a+1)(a-1)}}$+$\frac{(\sqrt{a+1})^{2}-\sqrt{(a+1)(a-1)}}{(\sqrt{a+1})^{2}+\sqrt{(a+1)(a-1)}}$
=$\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}$+$\frac{\sqrt{a+1}-\sqrt{a-1}}{\sqrt{a+1}+\sqrt{a-1}}$
=$\frac{(\sqrt{a+1}+\sqrt{a-1})^{2}+(\sqrt{a+1}-\sqrt{a-1})^{2}}{(a+1)-(a-1)}$
=$\frac{4a}{2}$
=2a.

点评 本题考查二次根式的化简、乘法公式等知识,灵活运用公式化简是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网