题目内容

10.如图,已知在等腰直角三角形ABC中,∠CAB=90°,以AB为边向外作等边△ABD,AE⊥BD,CD、AE交于点M,若DM=1,求BC的值.

分析 根据等腰直角三角形和等边三角形的性质证得△ADE是等腰直角三角形,求得DE的长,进而求得AB=AC=$\sqrt{2}$,然后根据勾股定理即可求得BC的值.

解答 解:∵△ABC是等腰直角三角形,
∴∠BAC=90°,AB=AC,
∵△ABD是等边三角形,
∴∠BAD=∠ADB=60°,AB=AD=BD,
∴∠CAD=150°,AC=AD,
∴∠ADC=∠ACD=(180°-150°)×$\frac{1}{2}$=15°,
∴∠MDE=60°-15°=45°,
∵在等边三角形ABD中,AE⊥BD,
∴DE=BE=$\frac{1}{2}$BD,
∴DE=$\frac{1}{2}$AB=$\frac{1}{2}$AC,
∴△DEM是等腰直角三角形,
∴DE=$\frac{\sqrt{2}}{2}$DM=$\frac{\sqrt{2}}{2}$×1=$\frac{\sqrt{2}}{2}$,
∴AB=AC=BD=2DE=$\sqrt{2}$,
∴在Rt△ABC中,BC=$\sqrt{A{C}^{2}+A{B}^{2}}$=2.

点评 本题考查了等腰直角三角形的判定和性质,等边三角形的性质,解直角三角形以及勾股定理的应用,熟练掌握性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网