题目内容

12.解方程组:
(1)$\left\{\begin{array}{l}{\frac{2x-1}{5}+\frac{3y-2}{4}=2}\\{\frac{3x+1}{5}-\frac{3y+2}{4}=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x+y}{2}+\frac{x-y}{3}=6}\\{4(x+y)-5(x-y)=2}\end{array}\right.$.

分析 (1)方程组整理后,利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)方程组整理得:$\left\{\begin{array}{l}{8x+15y=54①}\\{4x-5y=2②}\end{array}\right.$,
①+②×3得:20x=60,即x=3,
把x=3代入②得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x+y=36①}\\{-x+9y=2②}\end{array}\right.$,
①+②×5得:46y=46,即y=1,
把y=1代入②得:x=7,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网