题目内容

10.化简:
(1)($\sqrt{a+b}$)2=a+b;$\sqrt{(a+b)^{2}}$=|a+b|;
(2)($\root{3}{abc+1}$)3-$\root{3}{(abc+1)^{3}}$=0.

分析 (1)根据$\sqrt{{a}^{2}}$=|a|,($\sqrt{a}$)2=a,进行计算即可.
(2)根据$\root{3}{{a}^{3}}$=a,($\root{3}{a}$)3=a进行计算即可.

解答 解:(1)($\sqrt{a+b}$)2=a+b;
$\sqrt{(a+b)^{2}}$=|a+b|,
故答案为:a+b;|a+b|;

(2)($\root{3}{abc+1}$)3-$\root{3}{(abc+1)^{3}}$=abc+1-(abc+1)=abc+1-abc-1=0,
故答案为:0.

点评 此题主要考查了实数的运算,关键是掌握二次根式的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网