题目内容

3.(1)如图①,如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系,为什么?
(2)如图②,当∠1、∠2、∠3满条件∠1+∠3=∠2时,有AB∥CD,为什么?
(3)如图③,当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD,为什么?

分析 (1)过点E作EF∥AB.由两直线平行,同旁内角互补及已知条件∠B+∠E+∠D=360°求得∠FED+∠EDC=180°;然后根据平行线的传递性证得AB∥CD;
(2)过点E作EF∥AB.由两直线平行,内错角相等求得∠1=∠BEF;再用已知条件∠1+∠3=∠2,∠2=∠BEF+∠DEF推知内错角∠3=∠DEF,所以EF∥CD;最后根据平行线的传递性得出结论;
(3)过点E、F分别作GE∥HF∥CD.根据同旁内角互补以及已知条件求得同旁内角∠ABE+∠BEG=180°,所以AB∥GE;最后根据平行线的传递性来证得AB∥CD.

解答 解:(1)过点E作EF∥AB,如图①,

则∠ABE+∠BEF=180°,(两直线平行,同旁内角互补)
因为∠ABE+∠BED+∠EDC=360°,(已知 )
所以∠FED+∠EDC=180°,(等式的性质)
所以 FE∥CD,(同旁内角互补,两直线平行)
∴AB∥CD  (或平行线的传递性 ).

(2)如图②,当∠1、∠2、∠3满足条件∠1+∠3=∠2时,有AB∥CD.
理由:

过点E作EF∥AB.
∴∠1=∠BEF;
∵∠1+∠3=∠2,∠2=∠BEF+∠DEF,
∴∠3=∠DEF,
∴EF∥CD,
∴AB∥CD(平行线的传递性);


(3)如图③,当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.
理由:

过点E、F分别作GE∥HF∥CD.
则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,
∴∠GEF+∠EFD+∠FDC=360°;
又∵∠B+∠E+∠F+∠D=540°,
∴∠ABE+∠BEG=180°,
∴AB∥GE,
∴AB∥CD;
故答案是:(2)∠1+∠3=∠2;
(3)∠B+∠E+∠F+∠D=540°.

点评 本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网