题目内容

6.如图,等边△ABC和等边△ADE中,AB=2$\sqrt{7}$,AD=2$\sqrt{3}$,连CE,BE,当∠AEC=150°时,则BE=4.

分析 如作CM⊥AE于M,设CM=a,在RT△ACM利用勾股定理求出a,再求出CE,由△CAE≌△BAD,得到EC=BD,在RT△EBD中利用勾股定理即可求出BE.

解答 解:如作CM⊥AE于M,设CM=a,
∵△ABC、△ADE都是等边三角形,
∴AC=AB=2$\sqrt{7}$,AE=AD=DE=2$\sqrt{3}$,∠CAB=∠EAD=∠EDA=60°,
∴∠CAE=∠BAD,
在△CAE和△BAD中,
$\left\{\begin{array}{l}{CA=BA}\\{∠CAE=∠BAD}\\{EA=DA}\end{array}\right.$,
∴△CAE≌△BAD,
∴EC=BD,∴∠AEC=∠ADB=150°,
∴∠EDB=90°,
∵∠AEC=150°,
∴∠CEM=180°-∠AEC=30°,
∴EM=$\sqrt{3}$a,
在RT△ACM中,∵AC2=CM2+AM2
∴28=a2+(2$\sqrt{3}$+$\sqrt{3}$a)2
a=1(或-4舍弃),
∴EC=BD=2CM=2,
在RT△EBD中,∵DE=2$\sqrt{3}$,BD=2,
∴EB=$\sqrt{D{E}^{2}+D{B}^{2}}$=$\sqrt{(2\sqrt{3})^{2}+{2}^{2}}$=4.
故答案为4.

点评 本题考查全等三角形的判定和性质、等边三角形的性质、直角三角形中30度角的性质,解题的关键是利用150°构造30°的直角三角形,求出相应的线段,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网