题目内容
16.分析 延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.
解答
解:如图,延长BG交CH于点E,
∵AB=CD=10,BG=DH=6,AG=CH=8,
∴AG2+BG2=AB2,
∴△ABG和△DCH是直角三角形,
在△ABG和△CDH中,
$\left\{\begin{array}{l}{AB=CD}\\{AG=CH}\\{BG=DH}\end{array}\right.$,
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
$\left\{\begin{array}{l}{∠1=∠3}\\{AB=BC}\\{∠2=∠4}\end{array}\right.$,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE-BG=8-6=2,
同理可得HE=2,
在Rt△GHE中,GH=$\sqrt{G{E}^{2}+H{E}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
故答案为2$\sqrt{2}$.
点评 本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.
练习册系列答案
相关题目
11.
如图,A,B,C为⊙O上三点,若∠ACB=20°,则∠BAO的大小为( )
| A. | 40° | B. | 60° | C. | 70° | D. | 80° |
1.
如图,AB是⊙O直径,C,D是圆上的点,若∠D=20°,则∠BAC的值是( )
| A. | 20° | B. | 60° | C. | 70° | D. | 80° |