题目内容
4.方程组$\left\{\begin{array}{l}{x+y=2}\\{2x-y=1}\end{array}\right.$的解是( )| A. | $\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-2}\\{y=4}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$ |
分析 方程组利用加减消元法求出解即可.
解答 解:$\left\{\begin{array}{l}{x+y=2①}\\{2x-y=1②}\end{array}\right.$,
①+②得:3x=3,即x=1,
把x=1代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.
故选D.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
12.
如图,在正方形ABCD中,点E为AB的中点,AF⊥DE于点G,则$\frac{GA}{GD}$等于( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
9.
如图,在平行四边形ABCD中,E为CD上一点,连AE、BD,且AE、BD交于点F,若DE:EC=2:3,则S△DEF:S△ABF等于( )
| A. | $\frac{4}{25}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{9}$ |