ÌâÄ¿ÄÚÈÝ
1£®£¨1£©µ±µãPÔÚl1Óël2Ö®¼äʱ£®
¢ÙÇó¡ÏAPBµÄ´óС£¨Óú¬¦Á¡¢¦ÂµÄ´úÊýʽ±íʾ£©£»
¢ÚÈô¡ÏAPMµÄƽ·ÖÏßÓë¡ÏPBNµÄƽ·ÖÏß½»ÓÚµãP1£¬¡ÏP1AMµÄƽ·ÖÏßÓë¡ÏP1BNµÄƽ·ÖÏß½»ÓÚµãP2£¬¡£¬¡ÏPn-1AMµÄƽ·ÖÏßÓë¡ÏPn-1BNµÄƽ·ÖÏß½»ÓÚµãPn£¬Ôò¡ÏAP1B=$\frac{¦Á+¦Â}{2}$£¬¡ÏAPnB=$\frac{¦Á+¦Â}{{2}^{n}}$£®£¨Óú¬¦Á¡¢¦ÂµÄ´úÊýʽ±íʾ£¬ÆäÖÐnΪÕýÕûÊý£©
£¨2£©µ±µãP²»ÔÚl1Óël2Ö®¼äʱ£®
Èô¡ÏPAMµÄƽ·ÖÏßÓë¡ÏPBNµÄƽ·ÖÏß½»ÓÚµãP£¬¡ÏP1AMµÄƽ·ÖÏßÓë¡ÏP1BNµÄƽ·ÖÏß½»ÓÚµãP2£¬¡£¬¡ÏPn-1AMµÄƽ·ÖÏßÓë¡ÏPn-1BNµÄƽ·ÖÏß½»ÓÚµãPn£¬ÇëÖ±½Óд³ö¡ÏAPnBµÄ´óС£®£¨Óú¬¦Á¡¢¦ÂµÄ´úÊýʽ±íʾ£¬ÆäÖÐnΪÕýÕûÊý£©
·ÖÎö £¨1£©¹ýµãP×÷PQ¡Îl1½»ABÓÚQ£¬Ôò¡ÏAPQ=¡ÏMAP=¦Á£¬ÓÉ¡ÏAPQ=¡ÏMAP=¦Á¢Ù£¬¡ÏQPB=¡ÏPBN=¦Â¢Ú£¬¢Ù+¢Ú¼´¿É½â¾öÎÊÌ⣮
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ¼´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐÎд³ö½áÂÛ¼´¿É£®
½â´ð
½â£º£¨1£©¹ýµãP×÷PQ¡Îl1½»ABÓÚQ£¬Ôò¡ÏAPQ=¡ÏMAP=¦Á ¢Ù
¡ßl1¡Îl2£¬
¡àPQ¡Îl2£¬
¡à¡ÏQPB=¡ÏPBN=¦Â ¢Ú£¬
¢Ù+¢ÚµÃ¡ÏAPQ+¡ÏBPQ=¡ÏMAP+¡ÏPBN£¬
¡à¡ÏAPB=¦Á+¦Â£®
£¨2£©ÓÉ£¨1£©¿ÉÖª¡ÏP1=$\frac{1}{2}$£¨¦Á+¦Â£©£¬¡Ïp2=$\frac{1}{4}$£¨¦Á+¦Â£©£¬¡Ïp3=$\frac{1}{8}$£¨¦Á+¦Â£©¡
¡à¡ÏAPnB=$\frac{¦Á+¦Â}{{2}^{n}}$£®
¹Ê´ð°¸·Ö±ðΪ$\frac{¦Á+¦Â}{2}$£¬$\frac{¦Á+¦Â}{{2}^{n}}$£®
£¨3£©µ±PÔÚl1ÉÏ·½Ê±£¬¦Â£¾¦Á£¬¡ÏAPnB=$\frac{¦Â-¦Á}{{2}^{n}}$£®
µ±µãPÔÚl2Ï·½Ê±£¬¦Á£¾¦Â£¬¡ÏApnB=$\frac{¦Á-¦Â}{{2}^{n}}$£®
µãÆÀ ±¾Ì⿼²éƽÐÐÏßµÄÐÔÖÊ£¬½ÇµÄºÍ²î¶¨ÒåµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÌí¼Ó³£Óø¨ÖúÏߣ¬´ÓÌØÊâµ½Ò»°ã£¬Ì½¾¿¹æÂÉ£¬ÀûÓùæÂɽâ¾öÎÊÌ⣬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®
| A£® | -a•a3=a3 | B£® | -£¨a2£©2=a4 | C£® | x-$\frac{1}{3}$x=$\frac{2}{3}$ | D£® | £¨$\sqrt{3}$-2£©£¨$\sqrt{3}$+2£©=-1 |
| A£® | 30¡ã | B£® | 40¡ã | C£® | 50¡ã | D£® | 60¡ã |
| A£® | £¨-m-2n£© 2n | B£® | £¨m-2n£©£¨2n-m£© | C£® | £¨m-2n£©£¨-m-2n£© | D£® | £¨2n-m£©£¨-m-2n£© |