题目内容

13.已知21=2,22=4,23=8,24=16,25=32,26=64,…,那么(2+1)(22+1)(24+1)…(232+1)+1的个位数字是6.

分析 原式乘以(2-1),再依次根据平方差公式进行计算,求出结果,再根据2的整数次幂的个位数字的规律,可判断最后结果的个位数字.

解答 解:原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1
=(22-1)(22+1)(24+1)…(232+1)+1
=(24-1)(24+1)…(232+1)+1
=264-1+1
=264
∵21=2,22=4,23=8,24=16,25=32,…
∴2的整数次幂的个位数字每4个数字为一个循环组依次循环,
∵64=16×4,
∴264的个位数字与24的个位数字相同,为6,
故答案为:6.

点评 本题考查了平方差公式的应用,能灵活运用平方差公式进行计算是解此题的关键,注意:(a+b)(a-b)=a2-b2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网