题目内容

7.解方程组
(1)$\left\{\begin{array}{l}{y=x-1}\\{2x+y=5}\end{array}\right.$                   
(2)$\left\{\begin{array}{l}{2x-5y=22}\\{\frac{x}{3}+\frac{y}{2}=1}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{y=x-1①}\\{2x+y=5②}\end{array}\right.$,
把①代入②,得2x+x-1=5,
解得:x=2,
把x=2代入①,得y=1,
则原方程组的解为$\left\{{\begin{array}{l}{x=2}\\{y=1}\end{array}}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2x-5y=22①}\\{2x+3y=6②}\end{array}\right.$,
①-②得,-8y=16,
解得:y=-2,
把y=-2代入①,得x=6,
则原方程组的解是$\left\{\begin{array}{l}x=6\\ y=-2\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网