题目内容

14.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为16cm2

分析 由于E、F分别为BC、AD、CE的中点,可判断出BE、CE、BF为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.

解答 解:∵由于E、F分别为AD、CE的中点,
∴△ABE、△DBE、△DCE、△AEC的面积相等,
∴S△BEC=2S△BEF=8(cm2),
∴S△ABC=2S△BEC=16(cm2).
故答案为:16cm2

点评 此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网