题目内容

11.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值1.若函数y=-x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,则b的取值范围是-1<b≤3.

分析 根据函数的增减性、边界值确定a=-1;然后由“函数的最大值也是2”来求b的取值范围.

解答 解:∵k=-1,y随x的增大而减小,
∴当x=a时,-a+1=2,解得a=-1,
而x=b时,y=-b+1,
∴-2≤-b+1≤2,
且b>a,
∴-1<b≤3.
故答案为-1<b≤3.

点评 本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网