题目内容

3.根据所给条件求抛物线的解析式:
(1)抛物线过点(0,2)、(1,1)、(3,5)
(2)抛物线图象过点(-1,0)、(3,0),其最大值为3.

分析 (1)设一般式y=ax2+bx+c,然后把三个点的坐标代入得到关于a、b、c的方程组,再解方程组即可;
(2)先根据抛物线的对称性得到抛物线的顶点坐标为(1,3),再设交点式y=a(x+1)(x-3),然后把顶点坐标代入求出a即可.

解答 解:(1)设抛物线解析式为y=ax2+bx+c,
根据题意得$\left\{\begin{array}{l}{c=2}\\{a+b+c=1}\\{9a+3b+c=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=2}\end{array}\right.$,
所以抛物线解析式为y=x2-2x+2;
(2)∵抛物线图象过点(-1,0)、(3,0),
∴抛物线的对称轴为直线x=1,
∴抛物线的顶点坐标为(1,3),
设抛物线解析式为y=a(x+1)(x-3),
把(1,3)代入得a•2•(-2)=3,解得a=-$\frac{3}{4}$,
∴抛物线解析式为y=-$\frac{3}{4}$(x+1)(x-3)=-$\frac{3}{4}$x2+$\frac{3}{2}$x+$\frac{9}{4}$.

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网