题目内容

1.已知:如图,AO、BO是⊙O的两条半径,点C在⊙O上,∠ACB=30°,则∠ABO的度数为(  )
A.30°B.45°C.50°D.60°

分析 根据圆周角定理求出∠AOB,根据等腰三角形性质得出∠OBA=∠OAB,根据三角形内角和定理求出即可.

解答 解:∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴∠ABO=∠BAO=$\frac{1}{2}$×(180°-∠AOB)=60°,
故选D.

点评 本题考查了圆周角定理,等腰三角形性质,三角形的内角和定理的应用,解此题的关键是求出∠AOB度数和得出∠OAB=∠OBA.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网