题目内容

在平面直角坐标系中,抛物线经过点,且与轴的一个交点为

(1)求抛物线的表达式;

(2)是抛物线轴的另一个交点,点的坐标为,其中,△的面积为

①求的值;

②将抛物线向上平移个单位,得到抛物线.若当时,抛物线轴只有一个公共点,结合函数的图象,求的取值范围.

(1);(2)①;②答案见解析. 【解析】试题分析:(1)将A、B的坐标代入抛物线解析式求出b、c即可;(2)①过A作AF⊥x轴与点F,如图1,首先求出D的坐标,再根据△ADE的面积可求出DE的长度,接着可求出OE的长度即m的值;②利用抛物线的平移变换,可设抛物线C2的表达式为y=(x-1)2-4+n,接下去分类讨论:求出抛物线过点E和过原点时对应的n的值,并画出图像,利用图像可确定n的范围...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网