题目内容

如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.
考点:梯形,三角形三边关系,三角形中位线定理
专题:证明题
分析:作梯形ABCD的中位线EF,连接OE、OF,根据梯形中位线定理得出EF=
1
2
(AD+BC),根据直角三角形斜边上中线定理得出OE=
1
2
AB,OF=
1
2
CD,在△OEF中根据三角形三边关系定理得出OE+OF>EF,代入即可求出AB+CD>AD+BC.
解答:解:作梯形ABCD的中位线EF,连接OE、OF,
即EF=
1
2
(AD+BC),
∵AC⊥BD,
∵∠AOB=∠DOC=90°,
∵E为AB中点,F为DC中点,
∴OE=
1
2
AB,OF=
1
2
CD,
∵在△OEF中,OE+OF>EF,
1
2
AB+
1
2
CD>
1
2
(AD+BC),
∴AB+CD>AD+BC,
∴AD+BC<AB+CD.
点评:此题的难点在于将所求的线段转换到同一个三角形中,而正确地作出辅助线是顺利解题的前提;题目综合了梯形的中位线,三角形的三边关系定理,直角三角形斜边上中线定理等重要知识点,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网