题目内容

9.如图所示格点图中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,以原点O为位似中心,相似比为$\frac{1}{2}$,把△ABC缩小,则点C的对应点C′的坐标为(  )
A.(1,$\frac{3}{2}$)B.(2,6)C.(2,6)或(-2,-6)D.(1,$\frac{3}{2}$)或(-1,-$\frac{3}{2}$)

分析 根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,把C点的横纵坐标都乘以$\frac{1}{2}$或-$\frac{1}{2}$即可得到点C′的坐标.

解答 解:∵以原点O为位似中心,相似比为$\frac{1}{2}$,把△ABC缩小,
∴点C的对应点C′的坐标(1,$\frac{3}{2}$)或(-1,-$\frac{3}{2}$).
故选D.

点评 本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网