题目内容

10.小明在学习矩形这一节时知道“直角三角形斜边上的中线等于斜边的一半”,由此引发他的思考,这个定理的逆命题成立吗?即:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是否为直角三角形?
通过探究,小明发现这个猜想也成立,以下是小明的证明过程:
已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=$\frac{1}{2}$AB
求证:△ABC为直角三角形
证明:由条件可知,AD=BD=CD
则∠A=∠DCA,∠B=∠DCB
又∵∠A+∠DCA+∠B+∠DCB=180°
∴∠DCA+∠DCB=90°
爱动脑筋的小明发现用本学期所学知识也能证明这个结论,并想出了图2、图3两种不同的证明思路,请你选择其中一种,把证明过程补充完整:
 证法一:如图2,延长CD至E,使DE=CD,连接AE、BE;
又∵AD=DB
 证法二:如图3,分别作AC、BC的中点E,F,连接DE、DF、EF;
则DE、DF、EF为△ABC的中位线

分析 延长CD至E,使DE=CD,连接AE、BE,根据平行四边形的判定定理证明四边形ACBE是平行四边形,根据矩形的判定定理证明四边形ACBE是矩形,根据矩形的对角线相等证明结论.

解答 证明:如图2,延长CD至E,使DE=CD,连接AE、BE;
又∵AD=DB,
∴四边形ACBE是平行四边形,
又∵CD=$\frac{1}{2}$AB,CD=$\frac{1}{2}$CE,
∴四边形ACBE是矩形,
∴∠ACB=90°,
∴△ABC为直角三角形.

点评 本题考查的是矩形的判定和性质,正确作出辅助线、灵活运用矩形的判定定理和性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网