题目内容
7.| A. | 30° | B. | 45° | C. | 55° | D. | 60° |
分析 根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出∠ABN,再根据角平分线的定义求出∠ABE和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.
解答
解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=$\frac{1}{2}$∠ABN,∠BAC=$\frac{1}{2}$∠BAO,
∴∠C=∠ABE-∠BAC=$\frac{1}{2}$(∠AOB+∠BAO)-$\frac{1}{2}$∠BAO=$\frac{1}{2}$∠AOB,
∵∠MON=90°,
∴∠AOB=90°,
∴∠C=$\frac{1}{2}$×90°=45°.
故选(B)
点评 本题怎样考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
练习册系列答案
相关题目
17.方程4x2+4x+1=0的解是( )
| A. | x1=x2=2 | B. | x1=x2=$\frac{1}{2}$ | C. | x1=x2=-2 | D. | x1=x2=-$\frac{1}{2}$ |
12.下列各式中一定成立的是( )
| A. | $\sqrt{(-3)^{2}}$=-3 | B. | $\sqrt{7}$+$\sqrt{3}$=$\sqrt{10}$ | C. | $\sqrt{{x}^{2}}$=|x| | D. | ($\sqrt{-x}$)2=x |
19.
如图,已知平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,下面结论:
①DB=$\sqrt{2}$BE;②∠BAD=∠BHE;③AB=BH;④$\frac{A{C}^{2}+B{D}^{2}}{B{C}^{2}+D{C}^{2}}$=2
其中正确的有( )
①DB=$\sqrt{2}$BE;②∠BAD=∠BHE;③AB=BH;④$\frac{A{C}^{2}+B{D}^{2}}{B{C}^{2}+D{C}^{2}}$=2
其中正确的有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
16.
如图所示,矩形ABCD中,AB=6cm,BC=12cm,点P从A出发,沿AB向点B以1m/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度(P、Q到达B、C两点后就停止运动).若设运动第t秒时五边形CAPQCD的面积为S cm2,则S与t的函数关系式为( )
| A. | S=t2-6t+72 | B. | S=t2+6t+72 | C. | S=t2-6t-72 | D. | S=t2+6t-72 |