ÌâÄ¿ÄÚÈÝ
18£®¼×¡¢ÒÒÁ½³µÔçÉÏ7ʱ20·Ö·Ö±ð´ÓA£¬BÁ½³ÇÊгö·¢£¬ÑØÁ½³Ç¼äµÄͬһ¹«Â·ÏàÏò¶øÐУ¬8ʱ40·ÖÁ½³µÏàÓö£¬ÏàÓöʱ£¬¼×³µ×ߵķ³ÌÊÇÒÒ³µ×ߵķ³ÌµÄ$\frac{4}{5}$£®£¨1£©Çó¼×¡¢ÒÒÁ½³µÏàÓöǰƽ¾ùÿСʱ¸÷ÐÐÈ«³ÌµÄ¼¸·ÖÖ®¼¸£¿
£¨2£©ÏàÓöºó£¬Á½³µ¼ÌÐø°´ÔËÙ¶Èǰ½ø£®ÒÒ³µÔÚ;ÖÐijµØÓöÎí£¨Ò»Ö±µ½AµØÓÐÎí£©£¬ÓöÎíºóËٶȽµÎªÔËٶȵÄ$\frac{3}{5}$£»¼×³µ´ÓA³ÇÆðÖÁ×ßÍêÈ«³ÌµÄ$\frac{14}{15}$ʱÓöÓ꣨ÓêÒ»Ö±ÏÂÖÁµ½´ïBµØ£©£¬ËٶȽµÎªÔËٶȵÄ$\frac{3}{4}$£¬½á¹ûÒÒ³µµ½´ïA³ÇÓë¼×³µµ½´ïB³ÇµÄʱ¼äÏàͬ£¬ÊÔÎÊÒÒ³µÊ²Ã´Ê±ºòÓöÎí£¿
·ÖÎö £¨1£©ÉèÁ½³µÏàÓöǰ¼×³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄx£¬ÔòÒÒ³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄ$\frac{5}{4}$x£¬¸ù¾ÝÁ½³µÏàÓöÓÃʱ$\frac{4}{3}$Сʱ£¬¼´¿ÉµÃ³ö¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³ÌÇó³öxµÄÖµ£¬Óɴ˼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÉèÒÒ³µÓöÎíʱ£¬ÐÐÊ»ÁËÈ«³ÌµÄs£¬¸ù¾ÝÁ½³µµÄËÙ¶ÈÒÔ¼°Á½³µÍ¬Ê±µ½´ï£¬¼´¿ÉµÃ³ö¹ØÓÚsµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèÁ½³µÏàÓöǰ¼×³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄx£¬ÔòÒÒ³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄ$\frac{5}{4}$x£¬
8ʱ40·Ö-7ʱ20·Ö=1ʱ20·Ö=$\frac{4}{3}$Сʱ£®
ÓÉÒÑÖªµÃ£º$\frac{4}{3}$£¨x+$\frac{5}{4}$x£©=1£¬
½âµÃ£ºx=$\frac{1}{3}$£¬
¡à$\frac{5}{4}$x=$\frac{5}{12}$£®
´ð£ºÁ½³µÏàÓöǰ¼×³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄ$\frac{1}{3}$£¬ÒÒ³µÆ½¾ùÿСʱÐÐʻȫ³ÌµÄ$\frac{5}{12}$£®
£¨2£©ÉèÒÒ³µÓöÎíʱ£¬ÐÐÊ»ÁËÈ«³ÌµÄs£¬
ÓÉÒÑÖªµÃ£º$\frac{\frac{14}{15}}{\frac{1}{3}}$+$\frac{1-\frac{14}{15}}{\frac{3}{4}¡Á\frac{1}{3}}$=$\frac{s}{\frac{5}{12}}$+$\frac{1-s}{\frac{5}{12}¡Á\frac{3}{5}}$£¬
½âµÃ£ºs=$\frac{7}{12}$£®
´ð£ºÒÒ³µ´ÓB³ÇÆðÖÁ×ßÍêÈ«³ÌµÄ$\frac{7}{12}$ʱÓöÎí£®
µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î·½³ÌµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÊýÁ¿¹ØÏµÕÒ³ö¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£»£¨2£©¸ù¾ÝÊýÁ¿¹ØÏµÕÒ³ö¹ØÓÚsµÄÒ»ÔªÒ»´Î·½³Ì£®±¾ÌâÊôÓÚ»ù´¡Ì⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝÊýÁ¿¹ØÏµÁгö·½³ÌÊǹؼü£®
| A£® | m£¾0 | B£® | m£¼0 | C£® | m¡Ý0 | D£® | m¡Ü0 |
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{\sqrt{2}}{5}$ | D£® | $\frac{1}{5}$ |
| A£® | $\frac{\sqrt{5}-1}{2}$ | B£® | $\frac{\sqrt{5}-1}{4}$ | C£® | $\frac{\sqrt{5}+1}{4}$ | D£® | $\frac{\sqrt{5}+1}{2}$ |
| A£® | $\frac{5}{4}$ | B£® | $\frac{4}{3}$ | C£® | 2 | D£® | 3 |
| A£® | m+4 | B£® | m+8 | C£® | 2m+4 | D£® | 2m+8 |