题目内容

11.如图,在?ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,AB=3,AD=5,则EF的长为1.

分析 根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE-AD.

解答 解:∵四边形ABCD是平行四边形,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
则∠ABE=∠AEB,
∴AB=AE=3,
同理可证:DF=DC=AB=3,
则EF=AE+FD-AD=3+3-5=1.
故答案为:1.

点评 本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网