题目内容

如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=

. 【解析】试题分析:根据锐角三角函数定义直接进行解答. 【解析】 ∵在Rt△ABC中,∠C=90°,AB=13,AC=7, ∴sinB==. 故答案为:.
练习册系列答案
相关题目

在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.

100° 【解析】试题解析: ①, ②, ①?②得, 解得 故答案为:

如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )

A. B. C. D.

C 【解析】∵AC⊥BC,CD⊥AB, ∴∠α+∠BCD=∠ACD+∠BCD, ∴∠α=∠ACD, ∴cosα=cos∠ACD===, 只有选项C错误. 故选C.

如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为 .

【解析】试题分析:因为在Rt△ABC中,∠C = 90°,AB = 2BC,所以.

在Rt△ABC中,如果各边长度都扩大为原来的2倍,那么锐角A的正弦值(  )

A. 扩大2倍 B. 缩小2倍 C. 扩大4倍 D. 没有变化

D 【解析】根据锐角三角函数的概念,知若各边长都扩大2倍,则sinA的值不变. 故选D.

如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )

A. B. C. D.

C 【解析】∵AC⊥BC,CD⊥AB, ∴∠α+∠BCD=∠ACD+∠BCD, ∴∠α=∠ACD, ∴cosα=cos∠ACD===, 只有选项C错误. 故选C.

如图,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N.

试说明:PM=PN.

见解析 【解析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再根据角平分线的判定定理即可得出结论. 证明:因为BD为∠ABC的平分线, 所以∠ABD=∠CBD. 又因为BA=BC,BD=BD, 所以△ABD≌△CBD(SAS). 所以∠ADB=∠CDB. 因为点P在BD上,PM⊥AD,...

如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )

A. ∠A=∠D B. AB=DC C. ∠ACB=∠DBC D. AC=BD

D 【解析】试题分析:根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可. 【解析】 A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意; B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意; C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意; ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网