题目内容

如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )

A. ∠A=∠D B. AB=DC C. ∠ACB=∠DBC D. AC=BD

D 【解析】试题分析:根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可. 【解析】 A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意; B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意; C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意; ...
练习册系列答案
相关题目

如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=

. 【解析】试题分析:根据锐角三角函数定义直接进行解答. 【解析】 ∵在Rt△ABC中,∠C=90°,AB=13,AC=7, ∴sinB==. 故答案为:.

如图所示,一个能张开54°的圆规,若两脚长均为15 cm,则该圆规所画的圆中最大的直径是多少?(sin 27°≈0.4540,精确到0.01 cm)

27.24cm 【解析】试题分析:作AD⊥BC于D,根据等腰三角形的性质求出BD的长,即可求出BC的长. 试题解析:作AD⊥BC于D,则∠BAD=27°, ∴BD=ABsin 27°=15×sin 27°≈15×0.4540=6.81(cm),∴BC=2BD≈2×6.81=13.62(cm),∴直径=2BC≈2×13.62=27.24(cm).即该圆规所画的圆中最大的直径约是27...

如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为 .

72 【解析】由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度. 【解析】 ∵AB=AC,CD平分∠ACB,∠A=36°, ∴∠B=(180°-36°)÷2=72°,∠DCB=36°. ∴∠BDC=72°. 故答案为:72°

如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是( )

A. 70° B. 55° C. 50° D. 40°

D 【解析】试题解析:【解析】 ∵AB=AC, ∴∠B=∠C, ∵∠B=70°, ∴∠C=70°, ∵∠A+∠B+∠C=180°, ∴∠A=40°. 故应选D.

如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为_______.

3+ 【解析】过C作CD⊥AB于D,∴∠ADC=∠BDC=90°.∵∠B=45°,∴∠BCD=∠B=45°, ∴CD=BD.∵∠A=30°,,∴,∴. 由勾股定理得: ,∴.

在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.

(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:

事件A

必然事件

随机事件

m的值

(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m的值.

(1)填表见解析;(2)2. 【解析】试题分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m的值即可. 试题解析:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; 当摸出2个或3个时,摸到黑球为随机事件, 故答案为:4;2,3. (2)根据题意得: , 解得:m=2, 所以m的...

用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大?(  )

A. 转盘甲 B. 转盘乙 C. 两个一样大 D. 无法确定

C 【解析】【解析】 虽然两圆面积不同,但是阴影部分均占,故指针指向黑色部分的概率相同.故选C.

不一定在三角形内部的线段是( )

A. 三角形的角平分线 B. 三角形的中线

C. 三角形的高 D. 以上都不对

C 【解析】试题解析:三角形的角平分线、中线一定在三角形的内部, 直角三角形的高线有两条是三角形的直角边, 钝角三角形的高线有两条在三角形的外部, 所以,不一定在三角形内部的线段是三角形的高. 故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网