题目内容

15.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为(  )
A.m•tanα•cosαB.m•cotα•cosαC.$\frac{m•tanα}{cosα}$D.$\frac{m•tanα}{sinα}$

分析 根据在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,可以用含m和α的三角函数值表示出CD,通过角相等,它们的三角函数值也相等,可以解答本题.

解答 解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,
∴tanα=$\frac{CD}{AD}=\frac{CD}{m}$,
∴CD=m•tanα,
∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,
∴∠BCD=α,
∴cos∠BCD=$\frac{CD}{BC}=\frac{m•tanα}{BC}$,
即cos$α=\frac{m•tanα}{BC}$,
BC=$\frac{m•tanα}{cosα}$.
故选C.

点评 本题考查解直角三角函数,解题的关键是明确各个三角函数值的意义,利用转化的思想找到所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网