题目内容

8.如图,△ABC中,∠ABC=2∠C,AP和BQ分别为∠BAC和∠ABC的角平分线,若△ABQ的周长为20,BP=4,则AB的长为8.

分析 根据角平分线的定义求出∠CBQ=$\frac{1}{2}$∠ABC,由等角对等边得出BQ=CQ,得出BQ+AQ=CQ+AQ=AC…①;过点P作PD∥BQ,由“角角边”证明△ABP≌△ADP,由全等三角形对应边相等可得AB=AD,BP=PD,得出AB+BP=AD+PD=AD+CD=AC…②,由①②可得,BQ+AQ=AB+BP;即可得出AB的长.

解答 解:∵BQ平分∠ABC,
∴∠CBQ=$\frac{1}{2}$∠ABC,
∵∠ABC=2∠C,
∴∠CBQ=∠C,
∴BQ=CQ,
∴BQ+AQ=CQ+AQ=AC…①,
过点P作PD∥BQ交CQ于点D,如图所示:
则∠CPD=∠CBQ,∠ADP=∠AQB,
∵∠AQB=∠C+∠CBQ=2∠C,
∴∠ADP=2∠C,
∴∠ABC=∠ADP,
∵AP平分∠BAC,
∴∠BAP=∠CAP,
在△ABP与△ADP中,$\left\{\begin{array}{l}{∠ABC=∠ADP}&{\;}\\{∠BAP=∠CAP}&{\;}\\{AP=AP}&{\;}\end{array}\right.$,
∴△ABP≌△ADP(AAS),
∴AB=AD,BP=PD,
∴AB+BP=AD+PD=AD+CD=AC…②,
由①②可得,BQ+AQ=AB+BP;
∵△ABQ的周长为20,BP=4,
∴AB+BQ+AQ=AB+BP+AB=20,
∴AB=8;
故答案为:8.

点评 本题考查了全等三角形的判定与性质、三角形的内角和定理、等腰三角形的判定、三角形的外角性质;本题有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网