题目内容

2.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”
【提出问题】三个有理数a、b、c满足abc>0,求$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$的值.
【解决问题】
解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.
①当a,b,c都是正数,即a>0,b>0,c>0时,
则:$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$=$\frac{a}{a}+\frac{b}{b}+\frac{c}{c}$=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,
则:$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$=$\frac{a}{b}+\frac{-b}{b}+\frac{-c}{c}$=1+(-1)+(-1)=-1
所以$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$的值为3或-1.
【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数a,b,c满足abc<0,求$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$的值;
(2)已知|a|=3,|b|=1,且a<b,求a+b的值.

分析 (1)分2种情况讨论:①当a,b,c都是负数,即a<0,b<0,c<0时;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,分别求解即可;
(2)利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.

解答 解:(1)∵abc<0,
∴a,b,c都是负数或其中一个为负数,另两个为正数,
①当a,b,c都是负数,即a<0,b<0,c<0时,
则$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$=-$\frac{a}{a}$-$\frac{b}{b}$-$\frac{c}{c}$=-1-1-1=-3;
②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,
则$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}$=-$\frac{a}{a}$+$\frac{b}{b}$+$\frac{c}{c}$=-1+1+1=1.
(2)∵|a|=3,|b|=1,且a<b,
∴a=-3,b=1或-1,
则a+b=-2或-4.

点评 本题主要考查了有理数的混合运算,绝对值,有理数的除法,解(1)题的关键是讨论a与ab的取值情况.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网