题目内容

11.问题与探索
问题情境:课堂上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图(1),将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现:
(1)将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图(2)所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形.
(2)创新小组将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图(3)所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形,请证明这个结论.

分析 (1)结论:菱形.首先证明四边形ACEC′是平行四边形,再由AC=AC′即可证明结论.
(2)如图3中,过点A作AE⊥C′C于点E,首先证明DC′∥CB,DC′=BC,推出四边形BCC′D是平行四边形,再证明∠BCC′=900即可.

解答 解:(1)结论:菱形.
理由:如图2中,

由题意∵AB=BC,
∴∠BAC=∠BCA=∠CAC′=∠AC′D
∴AC′∥EC,
∵∠CAC′=∠AC′D,
∴AC∥EC′,
∴四边形ACEC′是平行四边形,
∵AC=AC′,
∴四边形ACEC′是菱形.

(2)如图3中,过点A作AE⊥C′C于点E,

由旋转的性质,得AC′=AC,
∴∠CAE=∠C′AE=$\frac{1}{2}$α=∠ABC,∠AEC=90°,
∵BA=BC,
∴∠BCA=∠BAC
∴∠CAE=∠BCA,
∴AE∥BC.
同理,AE∥DC′,
∴BC∥DC′,
又∵BC=DC′,
∴四边形BCC′D是平行四边形,
又∵AE∥BC,∠AEC=90°,
∴∠BCC′=1800-900=900
∴四边形BCC′D是矩形.

点评 本题考查四边形综合题.矩形的判定和性质、菱形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网