题目内容
3.甲、乙二人解关于x、y的方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$,甲正确地解出$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$,而乙因把C抄错了,结果解得$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,求出a、b、c的值,并求乙将c抄成了何值?分析 把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$,由方程组中第二个式子可得:c=-2,然后把解$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,求代入ax+by=2中即可得到答案.
解答 解:把$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$代入方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx-7y=8}\end{array}\right.$,
可得:$\left\{\begin{array}{l}{3a-2b=2}\\{3c+14=8}\end{array}\right.$,
解得:c=-2,
把$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$代入ax+by=2中,
可得:-2a+2b=2,
可得新的方程组:$\left\{\begin{array}{l}{3a-2b=2}\\{-2a+2b=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=4}\\{b=5}\end{array}\right.$,
把$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$代入cx-7y=8中,可得:c=-11.
答:乙把c抄成了-11,a的值是4,b的值是5,c的值是-2.
点评 本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.
| A. | 2500(1-x)2=1600 | B. | 1600(1-x)2=2500 | C. | 2500(1+x)2=1600 | D. | 1600(1+x)2=2500 |