题目内容
11.解方程组$\left\{\begin{array}{l}{x-y=2}\\{3x+2y=-19}\end{array}\right.$.分析 方程组利用加减消元法求出解即可.
解答 解:$\left\{\begin{array}{l}{x-y=2①}\\{3x+2y=-19②}\end{array}\right.$,
①×2+②得:5x=-15,
解得:x=-3,
把x=-3代入①得:y=-5,
则方程组的解为$\left\{\begin{array}{l}{x=-3}\\{y=-5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
19.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的概率约为0.6. (精确到0.1)
(2)估算盒子里有白球24个.
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是10.
| 摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
| 摸到白球的次数m | 70 | 128 | 171 | 302 | 481 | 599 | 903 |
| 摸到白球的频率 $\frac{m}{n}$ | 0.75 | 0.64 | 0.57 | 0.604 | 0.601 | 0.599 | 0.602 |
(2)估算盒子里有白球24个.
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是10.
8.
二次函数y=ax2+bx+c的图象如图所示,P(n,2)是图象上的一点,且AP⊥BP,则a=( )
| A. | -2 | B. | -3 | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |