题目内容

小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?

她还可能买5枝笔. 【解析】【试题分析】设她还可能买x只笔,根据总钱数不超过21元,列不等式求解. 【试题解析】设她还可能买x只笔, 由题意得,3x+2×2.2≤21, 解得:x≤. 答:她还可能买5枝笔.
练习册系列答案
相关题目

___________

【解析】试题分析:原式= = =. 故答案为.

x2m-1-8>5是一元一次不等式,则m的值为( )

A. 0 B. 1

C. 2 D. 3

B 【解析】根据一元一次不等式的定义得: ,故选B.

直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为

x≥1 【解析】 试题分析:首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案. 【解析】 将点P(a,2)坐标代入直线y=x+1,得a=1, 从图中直接看出,当x≥1时,x+1≥mx+n, 故答案为:x≥1.

不等式组﹣1<x<4的整数解有_________个.

4 【解析】在﹣1<x<4范围内的整数只有0,1,2,3, 所以等式﹣1<x<4的整数解有4个, 故答案为4.

如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.

(1)求证:四边形DEFG是平行四边形;

(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.

(1)证明见解析;(2)6. 【解析】试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 试题解析:(1)∵D、G分别是AB、AC的中点,...

如图,在?ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是(  )

A. AG平分∠DAB B. AD=DH C. DH=BC D. CH=DH

D 【解析】试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网