题目内容
| 1 |
| 3 |
考点:一元二次方程的应用
专题:几何动点问题
分析:根据题意∠C=90°,可以得出△ABC面积为
×6×8,△PCQ的面积为
(8-2x)(6-x),设出t秒后满足要求,则根据△PCQ的面积是△ABC面积的
列出等量关系求出t的值即可.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
解答:解:设x秒后△PCQ的面积为△ABC面积的
,
根据题意得:
(8-2x)(6-x)=
×
×6×8
解得:x=2或x=8,
答:经过2秒或8秒后,△PCQ的面积为△ABC的面积的
.
| 1 |
| 3 |
根据题意得:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
解得:x=2或x=8,
答:经过2秒或8秒后,△PCQ的面积为△ABC的面积的
| 1 |
| 3 |
点评:本题考查了三角形面积的计算方法,找到等量关系式,列出方程求解即可.要注意结合图形找到等量关系.
练习册系列答案
相关题目
| A、AC=BD |
| B、AD=CD |
| C、AB=BC |
| D、AD=BC |