ÌâÄ¿ÄÚÈÝ
3£®£¨1£©Öù×ÓOAµÄ¸ß¶ÈΪ$\frac{5}{3}$m£»
£¨2£©ÇóÅç³öµÄË®Á÷ÓëÖù×ÓµÄˮƽ¾àÀëΪ¶àÉÙmʱ£¬Ë®Á÷´ïµ½×î´ó¸ß¶È£»×î´ó¸ß¶ÈÊǶàÉÙm£»
£¨3£©ÇóË®³ØµÄ°ë¾¶ÖÁÉÙÒª¶àÉÙmʱ£¬²ÅÄÜʹÅç³öµÄË®Á÷²»ÖÁÓÚÂäÔÚ³ØÍ⣿
£¨4£©Ò»Éí¸ßΪ$\frac{11}{12}$mµÄСº¢£¬ÔÚ³Ø×ÓÄÚ¾àÖù×ÓÖÜΧ¶àÉÙmµÄ°ë¾¶ÄÚÍæË££¬²Å²»ÖÁÓÚʹˮÁ÷Ö±½ÓÅçµ½ÉíÉÏ£¿
·ÖÎö £¨1£©Ö±½ÓÀûÓÃx=0Çó³öyµÄÖµ£¬½ø¶øµÃ³ö´ð°¸
£¨2£©Ö±½ÓÀûÓÃÅä·½·¨Çó³ö¶þ´Îº¯Êý×îÖµµÃ³ö´ð°¸£»
£¨3£©ÀûÓÃy=0ʱµÃ³öxµÄÖµ£¬½ø¶øµÃ³öË®³ØµÄ°ë¾¶È¡Öµ·¶Î§£»
£¨4£©ÀûÓÃy=$\frac{11}{12}$µÃ³öxµÄÖµ£¬½ø¶øµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©µ±x=0£¬Ôòy=$\frac{5}{3}$£¬¹ÊOA=$\frac{5}{3}$m£»
¹Ê´ð°¸Îª£º$\frac{5}{3}$£»
£¨2£©y=-$\frac{1}{12}$x2+$\frac{2}{3}$x+$\frac{5}{3}$
=-$\frac{1}{12}$£¨x2-8x£©+$\frac{5}{3}$
=-$\frac{1}{12}$[£¨x-4£©2-16]+$\frac{5}{3}$
=-$\frac{1}{12}$£¨x-4£©2+3£¬
ÔòÅç³öµÄË®Á÷ÓëÖù×ÓµÄˮƽ¾àÀëΪ4mʱ£¬Ë®Á÷´ïµ½×î´ó¸ß¶È£»×î´ó¸ß¶ÈÊÇ3m£»
£¨3£©µ±y=0ʱ£¬0=-$\frac{1}{12}$£¨x-4£©2+3£¬
½âµÃ£ºx1=-2£¨²»ºÏÌâÒâÉáÈ¥£©£¬x2=10£¬
¹ÊË®³ØµÄ°ë¾¶ÖÁÉÙÒª10mʱ£¬²ÅÄÜʹÅç³öµÄË®Á÷²»ÖÁÓÚÂäÔÚ³ØÍ⣻
£¨4£©µ±y=$\frac{11}{12}$£¬
Ôò$\frac{11}{12}$=-$\frac{1}{12}$x2+$\frac{2}{3}$x+$\frac{5}{3}$
½âµÃ£ºx1=-1£¬x2=9£¬
ÔòÔÚ³Ø×ÓÄÚ¾àÖù×ÓÖÜΧ9mµÄ°ë¾¶ÄÚÍæË££¬²Å²»ÖÁÓÚʹˮÁ÷Ö±½ÓÅçµ½ÉíÉÏ£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄÓ¦ÓÃÒÔ¼°Åä·½·¨Çó¶þ´Îº¯Êý×îÖµ£¬ÕýÈ·ÕÆÎÕ¶þ´Îº¯ÊýµÄ×îÖµÇó·¨ÊǽâÌâ¹Ø¼ü£®
| A£® | -5+2=-7 | B£® | £¨-3£©2=6 | C£® | $\sqrt{4}$-$\root{3}{8}$=0 | D£® | 5-2x=3x |