题目内容

5.菱形中某两个角的和是90°,周长是12,则菱形的面积是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{5\sqrt{2}}{2}$C.$\frac{7\sqrt{2}}{2}$D.$\frac{9\sqrt{2}}{2}$

分析 直接利用菱形的性质得出其内角度数,进而利用锐角三角函数关系得出AE的长,即可得出菱形的面积.

解答 解:如图所示:过点A作AE⊥BC于点E,
∵菱形中某两个角的和是90°,
∴只有一组对角和为90°,如图所示:∠B+∠D=90°,
则∠B=45°,
∵菱形的周长为:12,
∴AB=3,
∴AE=AB•sin45°=$\frac{3\sqrt{2}}{2}$,
∴菱形的面积是:AE•BC=3×$\frac{3\sqrt{2}}{2}$=$\frac{9\sqrt{2}}{2}$.
故选:D.

点评 此题主要考查了菱形的性质以及锐角三角函数关系,得出菱形一边上的高是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网