题目内容

11.已知:实数a,b在数轴上的位置如图所示,化简:$\sqrt{(a+1)^{2}}$+2$\sqrt{(b-1)^{2}}$-|a-b|.

分析 根据数轴上点的位置关系,可得a、b的大小,根据非负数的性质,可化简整式,根据整式的加减,可得答案.

解答 解:由a、b位于数轴上的位置,得
-2<a<-1,1<b<1.5,
原式=-a-1+2(b-1)-(b-a)
=-a-1+2b-2-b+a
=b-3.

点评 本题考查了实数与数轴,利用数轴上点的位置关系得出a、b的大小是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网