题目内容
20.求证:四边形ADCE是菱形.
分析 欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.
解答 证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形.
点评 本题考查了菱形的判断以及直角三角形斜边上中线的性质,熟记菱形的各种判断方法是解题的关键.
练习册系列答案
相关题目
5.已知下列命题:
①各边相等的多边形是正多边形;
②相等的圆心角所对的弧相等;
③若a2=b2,则a=b;
④若直线y=kx+b经过第一、二、四象限,则k<0,b>0.
其中原命题与逆命题都是真命题的个数是( )
①各边相等的多边形是正多边形;
②相等的圆心角所对的弧相等;
③若a2=b2,则a=b;
④若直线y=kx+b经过第一、二、四象限,则k<0,b>0.
其中原命题与逆命题都是真命题的个数是( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
9.
今年4月23日,是第16个世界读书日.某校为了解学生每周课余自主阅读的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题
(1)表中的n=12,中位数落在C组,扇形统计图中B组对应的圆心角为108°;
(2)请补全频数分布直方图;
(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
| 组别 | 学习时间x(h) | 频数(人数) |
| A | 0<x≤1 | 8 |
| B | 1<x≤2 | 24 |
| C | 2<x≤3 | 32 |
| D | 3<x≤4 | n |
| E | 4小时以上 | 4 |
(2)请补全频数分布直方图;
(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.
10.
如图,四边形EFGH与四边形ABCD均为矩形,点E,F,G,H分别在边AB,BC,CD,DA上,且EF=3HE,AB=2BC,则tan∠AHE=( )
| A. | $\frac{1}{5}$ | B. | $\frac{1}{6}$ | C. | $\frac{2}{7}$ | D. | $\frac{3}{10}$ |